首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22393篇
  免费   2005篇
  国内免费   943篇
电工技术   1034篇
综合类   1417篇
化学工业   3701篇
金属工艺   939篇
机械仪表   1996篇
建筑科学   1917篇
矿业工程   428篇
能源动力   671篇
轻工业   1490篇
水利工程   132篇
石油天然气   1204篇
武器工业   147篇
无线电   4093篇
一般工业技术   2993篇
冶金工业   638篇
原子能技术   256篇
自动化技术   2285篇
  2024年   38篇
  2023年   308篇
  2022年   452篇
  2021年   683篇
  2020年   707篇
  2019年   652篇
  2018年   586篇
  2017年   738篇
  2016年   793篇
  2015年   851篇
  2014年   1357篇
  2013年   1302篇
  2012年   1461篇
  2011年   1592篇
  2010年   1294篇
  2009年   1278篇
  2008年   1164篇
  2007年   1276篇
  2006年   1244篇
  2005年   1095篇
  2004年   929篇
  2003年   952篇
  2002年   746篇
  2001年   628篇
  2000年   578篇
  1999年   480篇
  1998年   419篇
  1997年   317篇
  1996年   265篇
  1995年   236篇
  1994年   202篇
  1993年   172篇
  1992年   109篇
  1991年   70篇
  1990年   69篇
  1989年   68篇
  1988年   41篇
  1987年   19篇
  1986年   25篇
  1985年   28篇
  1984年   29篇
  1983年   20篇
  1982年   22篇
  1981年   8篇
  1979年   7篇
  1976年   8篇
  1975年   4篇
  1964年   2篇
  1959年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
文曼  熊春荣 《精细化工》2021,38(5):981-987
采用溶胶-凝胶法制备CuO-SiO2复合气凝胶,通过在气凝胶孔道内填充TiCl4,然后将其气相水解,得到了在CuO-SiO2气凝胶表面生长了高结晶度的TiO2纳米纤维(CuO-SiO2@TiO2),纤维直径~16 nm.通过XPS、UPS、UV-Vis DRS、荧光光谱(PL)等表征了材料的结构及光电性能.结果表明,制备的CuO-SiO2@TiO2对可见光有明显吸收,且荧光强度较商用TiO2(P25)大幅降低,光生电子-空穴对更加稳定.再在纳米纤维上负载CuO,所得CuO-SiO2@TiO2/CuO在可见光区的荧光强度进一步增强.以300 W氙灯为光源,分别以CuO-SiO2@TiO2及CuO-SiO2@TiO2/CuO为催化剂,无牺牲剂条件下光催化还原CO2,4 h后甲醇产率分别为1304.0及1589.0μmol/g-cat,转换频率(TOF)分别为0.038及0.046 h–1.循环实验表明,纳米纤维具有较好的光催化稳定性,经过4次光催化循环实验后,CuO-SiO2@TiO2/CuO的保留率~94%,甲醇产率可达1472.0μmol/g-cat,TOF为0.042 h–1.  相似文献   
2.
Images with hazy scene suffer from low-contrast, which reduces the visible quality of the scene, thus making object detection a more challenging task. Low-contrast can result from foggy weather conditions during image acquisition. Dehazing is a process of removal of haze from the photography of a hazy scene. Single-image dehazing based on dark channel priors are well-known techniques in this field. However, the performance of such techniques is limited to priors or constraints. Moreover, this type of method fails when images have sky-region. So, a method is proposed, which can restore the visibility of hazy images. First, a hazy image is divided into blocks of size 32 × 32, then the score of each block is calculated to select a block having the highest score. Atmospheric light is calculated from the selected block. A new color channel is considered to remove atmospheric scattering, obtained channel value and atmospheric light are then used to calculate the transmission map in the second step. Third, radiance is computed using a transmission map and atmospheric light. The illumination scaling factor is adopted to enhance the quality of a dehazed image in the final step. Experiments are performed on six datasets namely, I-HAZE, O-HAZE, BSDS500, FRIDA, RESIDE dataset and natural images from Google. The proposed method is compared against 11 state-of-the-art methods. The performance is analyzed using fourteen quantitative evaluation metrics. All the results demonstrate that the proposed method outperforms 11 state-of-the-art methods in most of the cases.  相似文献   
3.
为了解决机器人辅助在线检测系统示教过程中效率低、人为干预多的问题,针对孔类特征,提出一种通过处理光刀图像获取机器人位姿纠正参数的方法。在该方法中,纠偏过程按照将图像光刀线调整为水平方向、将被测特征调整至图像中央、根据不同特征调整最优扫描方向3个步骤进行。根据光刀图像可以求出测量坐标系与被测特征的位姿关系,并得到该位姿与理想测量位姿的偏差。经过坐标变换即可得到在机器人基坐标系下的调整参数。另外,可利用电脑控制机器人运动,从而实现了纠偏过程的自动化。实验结果表明,该方法可将初始的示教位姿修正为理想位姿,且比传统方式效率更高。  相似文献   
4.
从汽车内饰轻量化方向考虑,研究了化学微发泡技术,从成核和气泡长大阶段进行研究,通过特殊的柔性后退core-back工艺,在充模过程中控制气泡的变形和破裂以保证成型制品的表面质量,实现化学微发泡成型制品无外观缺陷、质量减轻20%以上的目的。  相似文献   
5.
《Ceramics International》2021,47(18):25863-25874
The inherent brittleness of bioceramics restricts their applications in load-bearing implant, although they possess good biocompatibility and bioactivity. ZnO, MgO and 58S bioglass (BG) were incorporated as additives to further improve the mechanical properties and biocompatibility of β-TCP and ZnO/MgO/BG-β-TCP composite scaffolds were manufactured via digital light processing (DLP). The composite with the best comprehensive performance was selected for degradation behavior and biocompatibility evaluation. The effects of different proportions of ZnO/MgO/BG on mechanical strength were analyzed and ZnO0·5/MgO1/BG2-β-TCP (ZMBT) samples exhibited superior mechanical strength. The improvement by 272% and 99% respectively was achieved in fracture toughness and compressive strength with the optimal recipe. The enhancement effect is realized through phase transition, alterative sliding actions and transgranular fracture to effectively prevent the load transfer combining the functions of bioglass and metal oxide. ZMBT scaffolds exhibited a more desirable pH environment and an enhanced ability of apatite-mineralization formation, meanwhile Si4+, Mg2+ and Zn2+ were gradually released from scaffolds. Furthermore, in vitro evaluation indicated that ZMBT scaffolds presented not only excellent cell attachment, proliferation, alkaline phosphatase (ALP) activity, but they up-regulated osteogenic gene (ALP, OCN, Runx2). These results suggest that the addition of ZnO/MgO/BG to DLP-printed β-TCP scaffolds offer a smart strategy to fabricate porous scaffolds with conspicuously better biological and physicochemical properties including compressive strength, bioactivity, osteogenesis and osteogenesis-related gene expression. Metal-oxide and BG synergistically enhanced the mechanical and biological properties which make the ZMBT scaffolds a strong candidate for bone repair applications.  相似文献   
6.
This study focused on the large band gap of TiO2 for its use as a photocatalyst under light emitting diode (LED) light irradiation. The photocatalytic activities of core–shell structured Au@TiO2 nanoparticles (NPs), nitrogen doped Au@TiO2 NPs, and Au@TiO2/rGO nanocomposites (NCs) were investigated under various light intensities and sacrificial reagents. All the materials showed better photocatalytic activity under white LED light irradiation than under blue LED light. The N-doped core–shell structured Au@TiO2 NPs (Au@N–TiO2) and Au@TiO2/rGO NCs showed enhanced photocatalytic activity with an average H2 evolution rate of 9205 μmol h?1g?1 and 9815 μmol h?1g?1, respectively. All these materials showed an increasing rate of hydrogen evolution with increasing light intensity and catalyst loading. In addition, methanol was more suitable as a sacrificial reagent than lactic acid. The rate of hydrogen evolution increased with increasing methanol concentration up to 25% in DI water and decreased at higher concentrations. Overall, Au@TiO2 core–shell-based nanocomposites can be used as an improved photocatalyst in photocatalytic hydrogen production.  相似文献   
7.
Herein, molybdenum disulfide nanoflakes decorated copper phthalocyanine microrods (CuPc-MoS2) are synthesized via two step simple hydrothermal method. The as synthesized hybrid along with pure molybdenum disulfide (MoS2) nanoflower and pure copper phthalocyanine (CuPc) microrods are well characterized by various techniques that confirm phase, morphology, elemental compositions etc. Next, electrocatalytic oxygen reduction reaction towards fuel cell is investigated in alkaline medium and obtained results proclaim that our CuPc-MoS2 heterostructure outperforms the other two constituent materials. Efficient oxygen reduction is achieved following four electron pathway by CuPc-MoS2 whereas partial reduction is done through two electron process by CuPc and MoS2 separately. Long-time durability test reveals almost 97.6% retention after 8000s that eventually dictate us that CuPc-MoS2 heterostructure can be the efficient cathode electrocatalyst for future generation fuel cell.  相似文献   
8.
Oxygen evolution reaction (OER) is a key process involved in many energy-related conversion systems. An ideal OER electrocatalyst should possess rich active sites and optimal binding strength with oxygen-containing intermediates. Although numerous endeavors have been devoted to the modification and optimization of transition-metal-based OER electrocatalysts, they are still operated with sluggish kinetics. Herein, an ion-exchange approach is proposed to realize the structure engineering of amorphous P–CoS hollow nanomaterials by utilizing the ZIF-67 nanocubes as the precursors. The precise structure control of the amorphous hollow nanostructure contributes to the large exposure of surface active sites. Moreover, the introduction of phosphorus greatly modifies the electronic structure of CoS2, which is thus favorable for optimizing the binding energies of oxygenated species. Furthermore, the incorporation of phosphorus may also induce the formation of surface defects to regulate the local electronic structure and surface environment. As a result of this, such P–CoS hollow nanocatalysts display remarkable electrocatalytic activity and durability towards OER, which require an overpotential of 283 mV to afford a current density of 10 mA cm?2, outperforming commercial RuO2 catalyst.  相似文献   
9.
The photocatalytic evolution of H2 over La2O3 decorated TiO2 catalyst was examined under solar light. It was observed that during the course of the reaction, the transformation of La2O3/TiO2 into La2O3–TiO2–La2O2CO3 occurred and these species effectively suppressed electron-hole pair recombination by forming electron trapping centres on the surface, resulting in an increased visible light absorption and improved H2 yield. The 2 wt%La2O3/TiO2 nanocomposite demonstrated better H2 yield (~8.76 mmol (gcat)?1) than the bare TiO2 (~1.1 mmol (gcat)?1). The catalyst was stable even after several consecutive recycles with no substantial loss of hydrogen production rate. The H2 rates were correlated with the physicochemical characteristics of the catalysts examined by BET–SA, H2-TPR, XRD, UV-DRS, Raman spectroscopy, FTIR, HRTEM, EPR and PL spectroscopy.  相似文献   
10.
The gas diffusion substrate (GDS) is essential in the proton exchange membrane fuel cells. Its fabrication techniques affect the performance significantly and are worthy of investigation. In this study, a manufacturing process of the GDS is proposed to understand the formation process of GDS and promote its structure and performance more pertinently. Different states during the preparation process, raw carbon paper, pre-curing, curing, carbonation, and graphitization, are characterized and measured. Experimental and numerical methods are employed to determine the relationships between microstructure, transport, and mechanical performance variation with the fabricating processes. The results show that its porosity, average pore size, and effective diffusivity decrease first and increase after curing. These parameters after graphitization are lower than that of the carbon paper (CP). The electrical resistivity increases dramatically while pre-curing and decreases gradually after curing, carbonation, and graphitization, and it is much reduced after graphitization. Moreover, mechanical measurement results show that both the picks of tensile strength and flexural modulus occur after curing. Its tensile strength shows little change after graphitization compared to the initial paper's. In contrast, the flexural modulus is improved significantly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号